
A FIRST REPORT ON SINTERING DIAGRAMS* 

X F. ASHBYI 

Six or more distingutihuble mechan&ns contribute to the sintering of an aggregate of particles-v-en 
in the absence of applied stresses. Digrams can be constructed which identify, at a given temperature, 
particle size andneck size, the dominant mechanism, and show the rafe ofsintering that all the mechanisms, 
acting together, produce. 

This paper describes the construction of two forms of these diagrams, and illustrates their use in 
interpreting sintering experiments and in solving practical sintering problems for metals and ceramics. 

DL1GRAJIJIES DE FRITTAGE (PREMIER ARTICLE) 

Six mdcanisnaes diatincacts, ou plus, contribuent au frittage d’un aggdgat de particules-m6me en 
l’absence de constraintes appliquCes. On peut construire des diagrammes qui donnent, B une temperature 
don&e, la teille des particules. la taille des cols, le mCani.sme dominunt, et mettent en Evidence la 
a&sac defrilme produite par tous les m&anismes agissant ensemble. Cet article d6crit la construction 
de ces diagrammes (30113 deux pr6sentations) et illustre leur utilisation pour interpreter lea expCriences 
de frittage et pour resoudre les problbmes pratiques de frittage des m&aux et des &ramiques. 

EIx ERSTER BERICHT VBER SINTERDLAGR_~IJIE 

Sechs oder mehr unteracheidbare Mechani8men tragen zum Sintern von Teilchen bei-such in Abwesen- 
heit einer BuBeren Belastung. E3 ki%men Diagramme konstruiert werden, mit deren Hilfe man bei 
vorgegebener Temperatur, Teilchengr6Be und Sinterhalsgr6lje den dominierenden Mechanismzcs identi- 
fizieren kann und die die Sintergeschwindigkeit zeigen, die sich aufgrund aller wirkenden Yechanismen 
ergibt. 

In der vorliegenden Arbeit wird die Konstruktion von zwei Diagrammformen beschrieben und deren 
Verwendung zur Interpretation van Sinterexperimenten und zur LBsung praktischer Probleme beim 
Sintern von Metallen und Keramik erliiutert. 

1. INTRODUCTION 

When a powder aggregate is sintered, necks form 
between the powder particles, and the aggregate may 
increase in density. Even in a pure, one-component 
system (pure silver, for instance) at least six dis- 
tinguishable me&nisms contribute to neck growth 
and to densification. Xost of these involve the 
diffusive transport of mat.ter to the growing neck; 
Fig. 1 shows some of the possible diffusion paths. 

Certain two-component systems (alloys, for 
example) are made more complicated by having two 
diffusing species which move at unequal rates; 
others (ceramics, for instance) have diffusion coeffi- 
cients which may vary strongly with deviations from 
stoichiometry and with trace levels of impurity. The 
application of a stress or pressure further complicates 
sintering by introducing new mechanisms, and by 
accelerating certain of the old ones. 

This report considers a relatively simple class of 
problems: the sintering, in the absence of applied 
stress, of pure one-component @ems, and pure 
stoichiometric compounds. Even then, the process is 
a complicat.ed one. The six mechanism$ illust,rated 
in Fig. 1 have a common driving force: it is the 
reduction in the surface area, and thus surface free- 
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energy of the system. They are distinguished by the 
diffusive path involved, and by the source from which 
matter is drawn, and the sink t.o which it flows. The 
table lists these in order. 

TABLE 1 

Mechanism Source of Sink of 
X0. Transport path matter* l matter* l 

1 Surface diffusion Surface Neck 
2 Lattice diffusion Surface PJeck 
3 Vapor transport Surface Keck 
4 Boundary diffusion Grain boundary Neck 

: 
Lattice diffusion Grain boundary Neck 
Lattice diffusion Dislocations NeCk 

l l Sintering problems can be formulated in terms either of 
the flow of matter, or of the counterflow of vacancies. It is 
more convenient to focus on the flow of matter. 

All of these-and others discussed below-con- 
tribute simultaneously to neck growth: the neck 
growth-rate or sintering rate, (dx/dt), is the sum of 
the six (or more) contributions. OK&- certain of 
them lead to densi&xztion: the rate at n;hich the 
particle centers approach each other, (d&3), is 
non-zero only when matter is removed from the grain 
boundary which separates two particles (mechanism 
4 and 5) or from dislocations within the neck region 
(mechanism 6). If this boundary and these dis- 
locations were removed, or prevented from acting 
as sinks for point defects, densification would cease, 
although neck growth might continue. 
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FIG. 1. Six alternative paths which permit diffusion- 
controlled sintering. All lead to neck gronth. Only 
paths 4-6 cause the particle centers to translate together, 

and so permit densification. 

If a powder aggregate is heated at a given tem- 

perature, will it densify? Nhat is the neck gromh- 
rate! What is the neck size after a given time? 
Which of the six or more mechanisms is the dominant 

one! How can one devise a time-temperature 

schedule which mill lead to maximum density or 

maximum porosity? These quest,ions have often 
caused difficulty, because the sintering rate is the 

sum of several component.s, not all of which contribute 

to densification. 
One way to answer them is presented in this report. 

It involves the construction of sintering diagrams: 
diagrams which show for a given temperature and 

neck size, the dominant mechanism of sintering, and 

the net rate of neck-growth or densification. 
Two forms such diagrams can take are shonn in 

Fig. 2. They describe the sintering of an aggregate 
of tungsten particles with a radius of 2 pm. The axes 
are homologous temperature, T/T,, (There T, is 
the melting point) and normalized neck rad~u-s, x/a, 
(where 2 is the radius of the disc of contact of two 
particles, and a is the particle radius). The space 

defined by these axes is divided into $elds. Within a 
field, a single sintering mechanism is dominant: it 
contributes most to neck growth. The largest field 

in Fig. 2, for example, is that corresponding to 
mechanism (1) : within this field, surface diffusion of 
matter from sources on the pore surface is dominant. 

Superimposed on the fields of Fig. 2(a) are contours 
of constant sintering rate: they show, for a given 
temperature and neck size, how fast the neck is 
growing. Figure 3(b) is a more useful version of the 
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FIG, 2. (a) A sintering-rate diagram for tungsten. The 
field8 indicate the dominant mechanism. In an unshaded 
field the dominant mechanism causes both neck-groTtih 
and densification; in a shaded field, only neck growth. 
The contours are lines of con&a& normalized ainteting 
rate, k/a; (b) A sintering-time diagram. It is identical 
with Fig. 2(a), but for the contours, which arc now lines 
of constant time, t. This shows the neck size after a given 

time-temperature treatment. 

diagram; here the contours are of constant sintering 
time: they show the neck size after a giren time. 

Diagrams like these are described more fully 
below. They give the rate, and identify the ~mechunism 
of sintering at a given temperature. As well as their 
use in designing and interpreting experiments, the 
diagrams have potential application to practical 
sintering problems. The unshaded fields describe 
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mechanisms which lead to densification: if a dense 

compact is desired, sintering should be performed in 

an unshaded field. Conversely the maximum porosity 

is retained if the aggregate is sintered in a shaded 

field, as far as possible from the boundary with the 

unshaded ones. 
Such diagrams are constructed from rate-eqmtions: 

equat,ions which describe the contribution of each 

p~rt,icipat,ing mechanism to the neck groxvt,h-rate 
or the densification rate. The next section describes 

the equations used for this report. I have attempted 
to select from the literature, or derive where necessary, 
equations lvhich best combine simplicity with a, 

sut%cient~ level of accuracy. Exhaustive reference to 

their history and derivation would be out of place ; 
instead, I simply refer to t,he appropriate review or 

paper, or indicate t,he met.hod of derivation. 
The diagrams shown in this report are based on two 

assumpt.ions : that the sintering occurs in the absence 
of an applied stress or pressure, and that the pores 

contain no gas other than the vapor of the material 
being sintered. Diagrams can be constructed which 
show the effect of pore pressure and of external 

pressure or stress on sintering, but they will not be 

described here. 

2. RATE EQUATIONS AND THE 
STAGES OF SINTERING 

9.1 Stages of .sin~er~~~ 

It is conventionaP to think of sintering as occurring 

in three sequential stages. Stage 1 is the early stage of 

neck growth : the individual powder particles are 

still distin~lishabIe. Stage 2 is the in~rmedi~te 

stage : the necks are now quite large, and the pores 
are roughly cylindrical. By the time the final stage- 
stage 3-is reached, the pores are isolated and 

spherical. 
The appropriate rate equation for B mechanism 

depends on the stage which sintering has reached. 
In the treatment described below we include a new 
staae- = stage O-which describes the instantaneous 

neck-formation which interatomic forces cause when 
powder particles are placed in contact. The next 

stage-stage l- is treated as distinct, with its oun 

rate equations. But we link stages 2 and 3 together, 
using a, single set of rate equations to describe bot’h. 

Though an approximation, it is adequate for the level 
of precision aimed at here. 

This Ievel of precision is Iow. The equations Iisted 
below are, at best, first approximetions. It is true 
that many of the features of the diagrams we con- 
struct from them depend on t,he mtio of r&es (not 
their absoiute magnitudes), when many of the 
approximations cancel. And the scales of t’he dia- 

grams are coarse: an error of a fact,or or two either 

l\-ay in one rate does not change them much. But 

the reader is caut,ioned not to regard the equat,ions as 

exact, or to attribute too much precision to the dia- 

grams based on t,hem. 

The symbols used in the remainder of this section 

have the following meanings : 

a 
x 

5 

particle radius 

radius of disc of contact of two particles 

the tinal value of x when 100 per cent 
density has been reached 

P, Pl, Pr radius of curvature of the neck 
hTl, h’,, h7$ curvature differences which drive diffu- 

sive fluxes 

surface diffusion coefficient 
lat,tice diffusion coefficient 

grain boundary diffusion coefficient 

diffusion coefficient in the gas phase 
effective surface thickness 

effective grain boundary thickness 

vapor pressure [P, I= PO esp - (Qrupl 

kT)1 

Ys 

YB 
n 

k 

surface free energy 

grain boundary free energy 
atom or molecular roiume 

Boltzmann’s constant (1.38 :< lo-16 ergs/ 
K ; 1.38 X 10-2s J/K) 

T 

TX 

f” 

4 
Ai 

: 

‘ii 

c 

absolute temperature (K) 

meking temperature (II) 

y$/kT (typically of magnitude 10-e cm) 
volume fraction of pores 

theoretical density 

initial density of powder compact 
shear modulus 
Burgers vector of dislocations, or the 

atomic or molecular diameter 
dislocation density 

velocity of sound (taken as 105 cm/set; 

lo3 misec). 

To perform the calculation described below, 
numerical values for these quant,ities must be known. 

In eddition to t,he quantities which vary rapidly with 
temperature (D, D, DB D, P,), an explicit tem- 

perature dependence of ,u and of y was included. 
That of quantities which scale as the lattice parameter 

(a, Z p, 4, s,, a, A, a) was considered to be too small _ 
to justify including it. 

2.2 The driving force: Surface curvature 

In the absence of pressure (or stress), sintering is 
driven by surface curvature-or rather, by the 
difference in surface curvature between sources and 
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sinks. This driving force differs for different diffusion 

paths : and, for a given diffusion path, it can depend 

on the configuration and geometrv of the sintering 

particles. 

The exact calculation of the curvature differences 

which drive sintering involves difficult geometry_, and 

the solution of t.ime-dependent diffusion equations 

[see. e.g. Ref. (A)]. Our aim, however, is to display 
thtL broad picture of sintering as a whole; clarity 

a~!(.[ adequate rigor are retained by taking simple 
expressions for the curvature difference, and adjusting 

them (when necessary) to give physically obvious 

asymptotic limits. 
Sintering of a row of spheres. Consider tirst a 

geometry commonly used in laboratory studies of 

Gntering : a row of spheres in contactt. Figure 3 

shon-s two of them. The broken lines indicate suc- 
cessive position of the groning neck; its radius of 

curvature is p. For simplicity, assume that the driving 

force goes to zero n-hen the last broken line is reached, 
that is, n-hen the row of spheres has become a cylinder. 
(This is not strictly true, but is adequate for all 

practical purposes.) During the early stages of 

sintering, the curvature difference for cliffusion from 

a surface source (mechanisms l-3) is obviously 

K= !_-A +? 
( 1 

(1) 
PJJ n 

where, by simple geometry, p = [x2/7(a - s)] (see, 

e.g. Kuczvnski(5)). But this does not go to zero at 

x = n. To make it do so, n-e multiply the expression 

by [l - (x/n)], giving: 

h_,= (;+)(I 2). (2) 

(h’, 2 0) 

Diffusion from a boundary source (mechanisms 
4, 5) or from dislocations (mechanism 6) is driven by 

a curvat’ure difference 

As I approaches a, K, starts to differ slightly from K,. 
But, experiments in which roars of spheres are sintered 

are rarely carried this far. For simplicity, we adopt 

+ The sintering of a sphere to B plate involves almost the 
s8me geometry. In this report we treat the two problems 83 

ident ical. 
: This choice is a compromise. If an equilibrium dihedral 

angle forms n-here the grain boundary between two spheres 
intersects the free surface, then sintering may stop before r 
grows to equal a. But in sintering 8 sphere to 8 plate, z msy 
grow until it is larger than a. These extreme cases are seldom 
of interest because such model experiments are used to study 
the early stages of sintering only. 

(0) (bl 
Fro. 3. The sintering of a row of spheres (a): or of a 
sphere to a plate (b). In both cases the curvature 
differences driving the various mechanisms decrease 

continuously. 

a single curvature difference, I<,. as the clriving force 

for all mechanisms during the sintering of a row of 

spheres, or of a sphere to a plate. The way in n-hi& 
K, varies with ~/a is shown in Fig. 3(a). 

Sintering of an aggregate of spheres. Of more 
practical interest-and complexity-is the driving 

force for the sintering of packed spheres. Figure 5 

defines the problem. The upper part of t’he diagram 
shows the pore shape during stage 1; its smallest 
radius of curvature is pl. Mechanisms which trans- 

port matter from one part of the pore to another 
(mechanisms l-3 of Fig. 1) are driven bF the differences 

FIG. 4. (a) The curvature difference, 6, driving the 
sintering of two spheres, or of a sphere to 8 plate; (b) the 
curvature differences driving sintering in a compact or 

aggregate of spheres. 
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STAGE 

STAGE 

FIG. 5. The upper figure shows the geometry during 
stage 1 of sintering; the smallest radius of curvature is 

. The lower one shows the assumed geometry during 
$ages 2 and 3; the pores have become cylindrical or 

spherical with a radius of pt. 

in curvature around the pore itself: between points 
A and B in Fig. 5. When the neck size, x, is small, 
this curvature difference is 

h_,L_!+Z (3) 
Pl x a 

(a curvature is negatire when its center of curvature 
lies within the material; positive when it lies in t.he 

pore). 
But the curvature difference must go to zero when 

the pore becomes cylindrical or spherical. If the 

initial density of the compact of particles is Ai, and 
the theoretical density of the material of which they 
are composed is A,,, then the volume fraction of space 

in the compact is 

A, - Ai 

f=,. 0 

If each pore sinters until it becomes spherical, and 
(on average) there are 3 pores per particle, then each 
spherical pore has a radius of (f/3)“lsa. We therefore 
require that K1 go to zero when (referring to Fig. 5): 

where xt is the final value of n when 100 per cent 

densit,y is reached. 
This is achieved by modifying equation (3) as 

follows 

and, as before 

pl=x?. 
?(a - 2) 

Mechanisms which transport matter from the grain 

boundary to the neck (mechanisms 4 and 5) are 

driven by the difference in curvature between points 

A and C (Fig. 5). This curvature difference does not 
go to zero when the pore becomes cylindrical or 

spherical. During stage 1, it is equal to (+(l/pJ - 

(l/z)]. B t h u w en the pore becomes cylindrical or 

spherical (Fig. 5, stages 2 and 3) it becomes l/p, or 

2/p,, respectively. We therefore adopt two expres- 

sions for the curvature driving mechanisms (4 and 5) : 

K,= L-1 
( 1 

(stage 1) (5) 
Pl x 

K 
2 -- 

3 - pz 
(stage 2 and 3) (6) 

(K, rO;K, 20); 

where pz = z, - z and p1 = [z2/2(a - z)]. (The 
justification for choosing the spherical pore-shape 

follows in Section 2.5). 
The precise form of these curvatures is important. 

To give a clearer picture of how K,, K2 and K3 (and 
thus the relative rates of the mechanisms) vary with 

neck size, they are illustrated schematically in Fig. 

4(b) for a compact containing an initial volume 

fraction, f, or pores equal t.o 0.2. The reader may 
disagree with my choices, or feel (correctly) that they 

could be improved. They are compromises which 
emphasize simplicity and physical clarity rather 

than rigor, and they leave considerable scope for 
refinement. Such refinements can readily be in- 

corporated into the computational scheme used to 
construct the diagrams. 

For later reference we note that, for a two-dimen- 
sional compact of straight wires, packed as shown in 
Fig. 6, 

x, = 0.5.5a. 

For a compact of spheres, 

5, = 0.74a 
has been used. 



2.3 Stage 0: ddhesiorh 

M-hen two particles are placecl in contact, inter- 

atomic forces act between them, drarting them 

together. They deform elastically, forming a neck.c6) 

If they are absolutely clean (they rarely are, of course) 
an upper limit for the radius of this neck is 

s. Yelr1c3a 
i 1 UP 

n-here yelf, an effectire surface energy, is given by the 

cleat& surface approximation: 

y - ly, - yp eff - 

It is the change in free energy when t,wo free surfaces 

are brought together to form a single grain boundary. 
(These forces cont,ribute to the green strength of a 

compact. The neck thus formed is relatively large 

when the particle size is small: adhesion may play 

an important role in the behavior of sub-micron 

sized particles.) 
Most particles are coated ll-ith an oxide, have an 

organic surface film, or are, in some other sense, 
dirty. Adhesion still occurs, but the forces involved 

are weaker. A lower limit is obt,ained by assuming 

them to be Tan der Waals forces. The cohesive energ- 
of a Van de; Waals bonded solid is typically one 

t#a-entieth as great as that of a metallic, ionic or co- 

valent solid (0.1 eT’ per atom instead of about 2 eV 
per atom). The lower limiting neck size is then given 

by equation (i), with yetL set. equal to rs/10 (the 
dirty surface approximation). 

It is at this stage that dislocation glicle may con- 

tribute to sintering. The local stresses,(@ set up by 
the adhesion process, can be large-as large as the 

ideal shear st,rength. Experiments with bubble 

rafts”5)-which obey the clean surface appro.uima- 
tion-show that dislocations are nucleated in the 

neck region, permitt’ing some neck growth. With real 
mat’erials t,his contribution to neck growth is com- 

parable to that due to adhesion alone (equat,ion 7), 
which n-e shall take as an adequate descript’ion of both. 

To obtain a rate-equation, we assume that, when 

particles are placed in cont.act,, interatomic forces 

draw them together at roughly the sound velocity 
(c = lo5 cmlsec) until equilibrium is established at 

t.he neck size given by equation (7). This leads 
immediately to 

2 

(i)O = 5% for x < J Y a” 1’3 
X ( 1 1OU 

3 1.3 
(i). = 0 for x 2 ( y,n- 1 . 

1op. 

(8) 

The diagrams of Sections 3 and 4 use the dirty surface 

approsimation. 

3.4 StarJe 1: Diffusion corttrolled nect growth 

At temperature above about 0.25 T,: adhesion is 

followed by diffusion-controlled neck-growth. The 

diffusion quickly remores the contact-stresses gener- 

ated during stage 0 ; from then on the diffusive fluses 
are driren by difference in surface currature (Fig. 1). 

The chemical potential of atoms at the neck n-here two 

particles meet is determined by the principal cur- 
vatures there. Matter flows into this region from all 

other parts of the system u-here the chemical potential 
is higher. The neck growth-rate is determined b_v the 

total flus of matter arriving at, the neck; and this is 

simply the sum of the contributions from the several 
independent paths shown in Fig. 1. 11-e non- con- 

sider these in order. As before, we seek an equa.tion 
for the instantaneous growt,h-rate in terms of the 

current geometry of the sample. All equations are 
derived by assuming a pucl.si .steady date (concentra- 

tion gradient,s reach st.eady values in a t,ime which is 

short compared to that required for changes of 

geometry of the particles and neck); equilibrium 

concentrntion.s ah all sinks and sources; ancl all involve 
simplifying assumptions about, the diffusion geometry 

and the magnitudes of chemical potential gradients.7 

All use the expression 

P = %-xpl.iz (9) 

t,o relate the volume flowing per unit. time into the 

neck region (v) to the neck growth-rate, (i), during 
stage 1 of sintering. 

Surface diffusion from a surface Source (mechanism 

1) leads to an approximate rate of neck growth 

given by (KuczJ?lski,(5) Wilson and Shenmon”)) : 

il = -“D,6,Fh-,3 (10) 
where 

p=ysn 
LT ’ 

This equation is easily modified to include the 
contribution of lattice diffusion from a .gzlrface 

source (mechanism (‘3) : Kucz>nski,‘5) U&on ancl 

Shewmon(2)). The contribution is 

2, = BD,Fh-,’ (11) 

Vapor trawport from a surfnce source (mechanism 
3 : Kingery and Berg”O)) leads to a neck growth-rate 

1’ (12) 

t Some consequences of an interfacial barrier at sinks tend 
sources has been discussed el3enhere.” Refinements of 
diffusion geometry are treated by Sichol~“~S’ and Rockland.‘9’ 
These refinements are not included in the equations uSed here. 
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(This equation is appropriate for sintering in a 
vacuum-the case considered in this report. In an 
inert gas atmosphere vapor transport may be 
diffusion limited.) 

Grain boundary transport from sources on the grain 
boundary (mechanism 4) is geometrically simpler 
than the others. Allowing the st.andard assumptions 
of a quasi st,eady-state, and equilibrium at sources 
and sinks, the diffusion problem can be solved 
exactly [see, e.g. Johnson(l The result is: 

f, = 
4Ds &FK,” 

(13) 
X 

a result which is misprinted in Ref. (2). 
The problem of lattice diffu.sion from sources on 

the graiti boundary (mechanism 5) has not been solved 
with similar rigor. An adequate result can be obtained 
by generalizing equation (13) to include the contri- 
bution from lattice diffusion, but there is disagreement 
about t,he appropriate way of doing this. I agree 
with, and have adopted, t,he approach of Wilson and 
Shewmon(s) lvhich amounts t’o replacing the area 
across which the boundary flux flows, roughly xxSs, 
by that across which the lattice diffusion flux passes, 
roughly Y& ; and replacing DB by D,. The contri- 
bution from lattice diffusion then becomes7 

g5 = 4D,FK,‘. (14) 

These last, t,no mechanisms translate particle centers 
together, causing densification. 

Lattice diffusion from dislocation sources (mechanism 
6) is a potential neck-growth mechanism. It has been 
argued that the surface stress induces a stress field 
within the neck region of order o = 2y/x, and that 
this drives dislocation creep. But steady creep is 
only possible if dislocations can be generated at 
sources-a process which requires that o > (,ub/x), 
and hence (in t’he absence of applied stress) that 2y > 
,ub. Since bhis inequality is never satisfied, steady- 
state creep by dislocation motion must be ruled out 
as a sintering mechanism-a conclusion reached by 
Wilson and Shewmon.‘“) 

Other possibilities remain. An attractive one is that 
all dislocation segments in the neck region climb, 
becoming curved, until they reach a configuration 
such that they are in static equilibrium. In climbing, 
the dislocations release matter which joins the neck. 
This transient creep cont,ribution is discussed further 
in Appendix 1, where a rate equation is derived for it. 

7 Xote added in proof. Recent unpublished calculations by 
G. Weatherly and D. Wilkinson indicate that this equation 
overestimates the contribution of lattice diffusion. 

The result is 

Of the various ways in which dislocations might 
contribute to sintering of an unstressed powder 
aggregate, this one appears to be the most important. 
But for reasonable values of the dislocation densit’y, 
N, ( ~10~s cm/cm3) even this contribution is negligible. 
Though included in the calculations described below, 
dislocation-dominated sintering rarely appears as a 
field on any of the diagrams simply because some 
other mechanism always goes faster. If esternal 
st,resses are applied to the powder aggregate, of course, 
the situation changes: dislocations then may con- 
tribute in an important map to sintering. 

Since they are all independent, the net aijaterirq 
rate during stage 1 sintering is simply the sum of the 
six cont.ributions listed in this section: 

(L??), = i ii (16) 

2.5 Stages 2 and 3 

As the neck grows, the curvature difference, lvhich 
drives most of these mechanisms, slowly dwindles. 
For the calculations of this report, I have drawn a 
distinction between stage 1, when a driving force 
exists for redistribution of mat,ter within a pore (from 
B to A in Fig. a), and stages 2 and 3, when this driving 
force has largely disappeared. There remains a 
driving force for diffusive flow of matter from point,s 
on the grain boundary separating trro particles 
(assuming that it is still there) and the pore: from C 
to A in Fig. 5. The subtler distinctions betlveen 
stages 2 and 3 are ignored; instead they are treated 
as obeying the same set of rate equations. 

Only two mechanisms are important: boundary 
diffusion from sources on the boundary, and lattice 
diffusion from the same sources. The first of these 
diffusion problems can be solved exactly-making 
the standard assumptions of a quasi steady-state, 
and perfect sinks and sources. The results for spherical 
and cylindrical pores are given in Appendix 2. They 
differ-though not enough to make important changes 
in the diagrams at the present level of approximation. 
Accordingly, we use the result for spherical pores, 
assumed to cont,ain no internal gas pressure. The 
result is (equation BB) : 

The problem of generalizing this to include a 
contribution from lattice diffusion is essentially the 
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same as that discussed in Section 2.4. We adopt t.he 3. SINTERING DIAGRAMS 

same solution, giving for the contribution of lattice 
diffu.sion from bounda y Sources t,he rate equation 3.1 Construction and properties of the diagrams 

is = & xD,FK,~ 
Consider a two-dimensional space with neck-size 

(18) 
and temperature as coordinates (Fig. 2). It is con- 
venient to use as ases the normalized neck-size x/a 
and ?mmoEogous temperature T/T,, where T, is the 

The laet wintering rate during st’ages 2 and 3 is given melting temperature of the material. 

hY The construction of a diagram involves two stages. 

w2.3 = 5, + is. We first ask: in what jeld of neck size/temperature 

TABLE 1 

Silver Copper Stoichiometric UO, Tungsten 

Atomic volume Q (cm%) 
Burgers vector b (cm) 
Yelting point (“K) TX 
Shear modulus /r (dyn/cm*) 
Temp coeff of ~c (/K) 
Dislocation density 
Density (g/cm3), 4, 
Surface energy ‘/a 

EB%%iv thickness 
(cm)& 

Eff. surface thickness 
(cm) 6, 

D. for lattice diffusion 
“(cm’/sec) 

Activation energy for 
lattice diffusion 
Q, kcal/mole 

D, for boundary diffusion 
(cm*/sec) 

.1ctivation energy for 
boundary diffusion, QB 
(kcal/mole) 

D, for surface diffusion 
(cm*/sec) 

Activation energy for 
surface diffusion, Q, 

Preexponential for vapor 
pressure, P, dyn/cm* 

Activation energy for 
evaporation, Qv.p 
kcal/mole 

1.71 x lo-‘3 
2.98 x 10-a 

1234 
2.64 x 10” (a. b) 
4.36 x lo-’ ia; bj 

10’0 
ii.3 
1120 (c) 

5.78 x 1O-8 

3.0 x 10-e 

4.4 x 10-l (d) 

44.3 (d) 

1.2 x 10-l (e) 

21.5 (e) 

5.0 x 10’ (f) 

63.6 (f) 

9.53 x 10” (g) 

65.2 (g) 

1.18 x lo-= 
2.56 x lo-* 

1356 
4.21 x 10” 
3.97 x lo-’ 

12 
, 

TV; 

10’0 
8.96 
1720 (c) 

5.12 x 10-a 

3.0 x 10-a 

6.2 x 10-l (d) 

49.6 (d) 

10-l 

25.0 (t) 

2 x IO’ (j) 

49.0 (j) 

1.23 x lOI* (g) 

77.5 (g) 

4.1 x lo-= (k) 
3.86 x 10-s 

3123 
8.; ; ;;I: (k, 1) 

(k, 1) 
108 

10.94 
1000 (m) 

5.34 x 10-S 

3.54 x 10-a 

6.8 X lo-” (n) 

98.3 (n) 

4 x 10-2 (0) 

52.0 (0) 

3.4 x 10s (P) 

108.P (P) 

4.11 X 10” (q,r) 

143.9 (q, r) 

1.59 x lo-*3 
2.73 x 10-a 

3683 
1.55 x lo’* (s) 
1.04 x ;w; (t) 

19.3 
2650 (c) 

5.48 x 10-a 

3.0 x 10-e 

5.6 (u) 

140.0 (u) 

10.0 (v) 

90.5 (v) 

8.3 (w) 

78.0 (w) 

3.23 x 10” (g) 

187.1 (9) 

t Inferred bv scalinn data of materials of the same structure and of comparable melting points. The activation energy is 
the same as thit obse&ed for Au in Cu grain boundaries.(‘J 
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space i.3 a gicen mechanism dominant--that is, where 

does it contribute more to the neck growth-rate than 

any other single mechanism3 The houndaries of the.se 

Jielde are obtained by equating pairs of rate equations 

and solving for neck-size as a function of temperature. 

At. field boundaries (sh0T-n as heavy lines on Fig. 2) 

two mechanisms contribute equally to the sintering 
rate. The heavy broken line marks the transition 

from stage 1 to stages 2 and 3: the mechanism does 

not, change here, though t,he equation used to describe 
it does (Sect’ion 2). Above this line the rat,e of sintering 
increases nit,h neck size: it might not do so if the 

pores contained trapped gas, but, we have assumed 
they do not,. On diagrams such as this one, which 

describe the sintering of an aggregat’e of particles, 
the fields in which a non-densifying mechanism is 

dominant. are shaded. 
Superimposed on the fields are contours of constant 

neck grodh-rate (Fig. ?a), or of constant time (Fig. 2b). 

The neck growth-rate is the sum of the contributions 
due to each of the mechanisms listed in Section %- 

wit,h one restriction. TX-O rate-equations are listed 
for each of the t.1v-o mechanisms (4 and 5) : one pair is 

appropriate in stage 1, the ot,her in stage 213. These 
pairs are treated as alternative, not additive, pro- 

cesses (for obvious reasons) : the faster pair is added 
into the total rate; the slower pair is omitted from 

the sum. 
Contours of const’ant time are comput,ed by the same 

method-and with the same restriction-from an 

integral of the sum of the rate-equations with respect 
t.o time. So new physics is involved, but the resulting 

diagrams are usually more convenient to use; all but 

one of t.he figures in this report are of this second 
t_ype. The diagrams are constructed by numerical 
computation. The data used to do this is listed in 

Table 1. 
Figure 6 shows diagrams for aggregates of silver 

particles of two sizes: radii of 100 pm and 10 pm. 

(The temperature scale on this and most subsequent 

diagrams is expanded, and starts at O.JT,.) Sintering 
at constant temperature is described by a vertical line 

on the diagram ; more complicated time-temperature 
schedules can be plotted onto the diagram and show 
the dominant mechanism and neck-size, at each 

point in the schedule. F&me 6 illustrates that the 
relative size of a field depends on the particle size, a, 
because the rate-equations differ in their dependence 

on a. Obviously there is no single ‘mechanism’ of 
sintering: the mechanism which appears as dominant 
depends on temperature, on particle size, and on 
time: that is, on the stage that sintering has reached. 
The contours of constant time, too, are shifted if the 

. . . 
HOMOLOGOUS TEMPERATURE T/T, 

(a) 

TEMPERATURE *C 

LOO 500 600 700 100 900 

WRY DIFFUSION /J i! 

HOMOLOGOUS TEMPERATURE T/TM 

(b) 

Fro. 6. (a) The Gntering of an aggregate of silver spheres 
of radius CI = 100 pm and initial relative density 0.8; 
(b) The same, for a = 10 pm spheres. Because the mech- 
anisms depend on a in different ways, the field boundaries 
move when the particle size is changed. The time- 
contours also move: large particles sinter more slonly. 

particle size changes, and may be moved from one 

field into another-as they are in Fig. 6. 
Xot all the mechanisms which contribute to sintering 

appear as fields. Vapor transport, for instance, is 
included in all the computations shown here, yet it 

does not appear as a field on Fig. 6. On Fig. 7, a 
diagram for the sintering of CO,, it does-because the 
relative magnitudes of the vapor pressure and diffu- 
sion coefficients, etc. are different for CO, than for 
silver. 

Change of microstructure drastically alters the 
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TEMPERATURE ‘C TEMPERATURE *C 
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FIG. i . d sintering diagram for an aggregate of UO, 
particles of radius 10 ,am. Unlike the diagrams for 
tungsten and silver, vapor transport appears here as a 

dominant mechanism. 

diagrams. Sintering near t,he melting point, for 

example, can cause grain growth or recrystallization. 

The neck between two particles then no longer con- 
tains a boundary, and mechanisms (4 and 5) (which 

use the boundary as a source) are suppressed. The 
result, for copper, is shown in Fig. 8: the rates of 

sintering are reduced, and neck growth stops com- 

pletely when t,he neck size is about 0.32a; finally, a 
new field appears in which volume diffusion from the 
surface is dominant. 

(The diagrams of Fig. 8 are designed to describe 
the esperiment,s of Alexander and Balluffi,(rs) who 

sintered copper wires (a = 64 pm) at 107$C for 

108 hr : their sintering schedule is shown as & vertical 
line on Fig. 8. This schedule caused grain growth 

and-as shown in their Fig. ‘I-necks with no bound- 

ary in them have grown to roughly the size predicted 

by Fig. 8b.) 

3.2 Limitation8 and extensions 
the state of our understanding of sintering and of the 

parameters which determine its rate. 
The diagrams are only as good as the equations and For certain mechanisms, more precise rate-equa- 

the data used to construct them. The equations tions exist, or could be developed. But until data 

listed in Sect.ion 2 are far from perfect : all are based improves, it appears more rerarding to extend the 
on idealized geometries, and most make approxima- diagrams t.o include such things as the effect of 
tions in solving the diffusion equation. But the data internal gas pressure, elrternal pressure or stress, 
is even less reliable. Grain boundary and surface interface-reaction cont.rolled kinetics, grain growth 
diffusion coefficients are notoriously difficult to during sintering, and activated sintering. The 
measure; where measurements exist, they are rarely computational scheme described above is a very 
reliable to bet,ter than 8 factor of 2. This is not a flexible one : all these phenomena can readily be 
defect of the diagrams themselves-it simply reflects included in it. 

-2w 0 2w QJl 600 too 1000 

On, 1 
2 I FULL DENSITY REACHED, 

+ BORY OIFF. FROM BOUNOARY 2 
$_____-_____-’ 

1. 0 *6.4rlcr’cm- 

A, /A0 = 0.7 

SO04 EONS # I 

6 3 IO 

HOMOLOGOUS TEMPERATURE T/TM 

TEMPERATURE ‘C 
-200 0 2w alo 600 ace 1000 

0 :, ,! j 

Com~oc? no Bdry 

SOW EONS #I 

HOMOLOGOUS TEMPERATURE T/T,+, 

FIG. 8. The sintering of copper wires with, and without, a 
gram boundary in the neck between the wires. Removal 
of the boundary suppresses mechanisms nhich use it as 
a source. (The input data matches the experimental 
conditions of Alexander and Ballti;~lL~ the diagrams 

should be compared with their Fig. 7.) 
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1. .4PPLICATIONS 

The finirl section of thisreportillustrates the applica- 

t,ion of the diagrams to the interpretation of experi- 

ment, and to t,he design of sintering schedules. 

4.1 The design and analysis of experi,ment 

(a) Kuczynski’b- measurements on copper. Kuczyn- 
ski,(s) in a classic study of sintering, measured t,he 

neck growth-rate of copper spheres (a = 40 ,um) on 
a copper plate, The ranges of temperature and time 
he used, and the resulting range of neck size, was 

T = TOO-9OO’C 

t = 0.541 hr 

X 
- = 0.1-0.31. 
a 

Figure 9 shows the appropriate diagram. (It was 

computed by using rate equations (8-16) inclusive, 

and setting .k’, and R, both equal to equation (2).) 
The box on the diagram is bounded by the ranges of 
T and t that Kuczynski used. The neck size is pre- 

dicted tolerably well : comparing predictions for a 

&-en T and t with experiment shows a maximum 

discrepancy of 20 per cent in x/a. For most data 

points, the agreement is much closer: typically 5 

per cent error. 

TEMPERATURE ‘C 

5% KQQ tw 100 fw lQQQ 

0 

1116’ 

-2 0 
Q SO 0.64 0.70 Q#l 0.90 1.00 

HOMOLOGOUS TEMPERATURE TIT. 

FIG. 9. This diagram describes the sintering of a copper 
sphere to a plate. With this geometry the driving force 
decreases continuously (as explained in Section 2.2) and 
the mechanisms corresponding to stages 2 and 3 are 
absent. The shaded box shows the range of time and 

temperature investigated by Kuczynski.~~~ 

The data lies entirely in the field for which surface 
diffusion from a .surface Source is domina.nt, though 

the low temperature end is close enough to the 

boundary diffusion controlled field so that the con- 

tribution from it-and from volume diffusion--n-ill 

be appreciable. 
Kuczynski interpreted the data as indicating volume 

diffusion cont,rol. His conclusion was based on the 
determinat,ion of the exponent?? n, in the equation 

xn = _-It, 

and on an experimental activation energy close to 

t,hat for lattice self-diffusion. 
This apparently attractive met,hod of matching a 

mechanism to the exponent, n, is misleading for two 

reasons. First, the sintering rate is rarely determined 

by a single mechanism: it is usually t.he sum of 

several contributions, with relative magnitudes that 
change as sintering proceeds. (At a field boundary, 

two mechanisms contribute equally; IThere three 
fields meet, three do.) This alone makes deductions 

based on ‘n unsure ; they become even less certain 
when the detailed geometry of a single mechanism 
is considered (Xchols@*s) ). Then it is found that a 
mechanism is not characterized by a constant, 

integer value of n, as the simple equations (10-14) 

would predict. 

An activationenergy does characterize a mechanism, 

provided it acts alone. But the reported activation 
energies for surface and volume diffusion in copper 
are almost identical: 49.0 and 49.6 kcal/mole. Our 

conclusion (fully supporting that first reached by 
Wilson and Shewmon(*)) is that surface diffusion was 

dominant in Kuczynski’s experiments on copper. The 
exponent, n, and the activation energy are not usually 

sufficient to identify the dominant mechanism of 
sintering, though an experiment conducted in the 

cent,er of a field, far from all field boundaries, might 

give useful data. But although I believe the diagram 
method is a better way of interpreting experiments, 
its conclusions should be treated cautiously for the 

reasons given in Section 3.2 ; different input data 
could lead to different conclusions. 

(b) Kuczynski’s measurements on silver. Similar 
experiments(5) on silver (a = 180 pm) are reanalyzed 

in Fig. 10. (This diagram was constructed from the 
equations, and with the curvature listed under 4.1(a). 
Note that a vapor transport field appears.) The 

t If equations (l&IA) are integrated with respect to time, 
a set of equations of this form is obtained. The e.xponent, n, 
characterizes a mechanism. 
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FIQ. 10. The sintering of 180 p silver spheres to a plate. 
The shaded box indicates the range of time and tem- 
perature investigated by Kuczynski.‘“’ His investiga- 

tion overlaps three fields. 

dat.a spans the ranges 

T = 500-800°C 

1 = l-90 hr 

x 
- = 0.033-0.162. 
a 

The shaded region is bounded by the ranges of T and 
t that Kuczynski used. The maximum error in 
predicting x/a is 12 per cent (and is systematic: it 
appears to indicate that the rate of grain-boundary 
diffusion is overestimated on the diagram). 

The data overlaps three fields: it is an example of 
just how complicated the interpretation of sintering 
can be, even in model experiments like this one. 
More of the data lies in the boundary-diffusion- 
controlled field than in any other; but throughout 
the range of these experiments, boundary, volume 
and surface diffusion contribute significantly to neck 
growth. Clearly it is hopeless to rely on the exponent, 
r~, or an activation energy, to identify ‘themechanism’ : 
both vary continuously over this range of T and t. 
(With the insight the diagram gives, one looks for a 
different trend than did Kucznyski : a high activation 
energy where volume and surface transport dominate, 
and a lower one where boundary diffusion takes over. 
In fact the data can be re-analyzed in this frame- 
work to give an activation energy of 57 kcals at the 
higher temperatures, and of 28 kcals at the lower 
ones.) 

Our conclusion is that the data are consistent wit,h, 
and logically explained bv. a dominance of grain- 
boundary diffusion below XO’C, and a superposit.ion 
of volume and surface diffusion above. 

(c) The measurements of Kingery and Berg on 

copper. Kingery and Berg(‘O) measured neck growth 
between two spheres of copper (a = 3Tpm). Their 
ranges of T and t limit the box shown on Fig. 11 (the 
diagram was constructed as described in 4.1.a). The 
predicted neck sizes are in broad agreement (k-70 %) 

with those observed. 
By measuring the exponent, YL, and the activation 

energy, the authors concluded t,hat volume diffusion 
was the dominant mechanism. Reasons for mis- 
trust.ing conclusions based on these two measurements 
were listed in Section 4.1(a), and seem to apply here: 
the diagram indicates surface diffusion. 

Our conclusion is that surface diffusion is dominant, 
wiith a significant contribution from volume diffusion. 

(d) The measurements of Jrileon ad Shelcmon on 

copper. Wilson and Shen-rnonQ’ measured neck 
growth in a row of copper spheres. Some of their data 
(that for a = 88 pm)is shown on Fig. 12. The diagram 
supports their conclusion that, surface diffusion is 
generally dominant, though it also indicates a large 
cont,ribution from volume diffusion, which may 
become the dominant mechanism at’ the larger neck 
sizes. It is obviously rwt correct to state that, surface 
diffusion always dominates neck growth: above a 
certain neck size (x/a = 0.31 in this case) volume 
diffusion takes over, and below a certain temperature 

TtMFERATURE YZ 

VQ 600 100 KC 9cc 1::‘. 

0 

-20 
0 50 

so04 EONS Y2 

0.0 Q IQ Q !P :%I ‘W 
HOMO‘OGOUS TEMPERATURE T/T. 

FIG. 11. The sintering of two copper spheres of radius 
57 pm The shaded box shows the region investigated by 
Kingery and Berg.‘l”’ It lies entirely in the surface- 

diffusion controlled field. 
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FIG. 12. The sintering of two copper spheres of radius 
$8 jd. The box shows the area investigeted by Wilson 

and Shewmon”) for this particle size. 

(0.55 T, in this case) grain boundaT diffusion 
dominates at all neck sizes. 

It, may not be sufficiently appreciated that t,he 
sintering of a row of spheres and of a compact of 
spheres may differ in mechanism. suppose, for 
instance, that a compact of copper spheres of the same 
size (88 p) as those used by W&on and She-on, was 
sintered for the s8me times and temperatures. The 
appropriate diagram is shown in Fig. 13: the box 

” ,., . ._ 

HOMOLOGOUS TEMPERATURE T’TM 

FIG. 13. The sintering diagram for an aggregate of spheres 
of the same size as those of Fig. 11. Because the ge- 
ometfv of the neck between two isolated spheres differs 
from that in a compact, the fields differ in size and posi- 
tion. The box of Fig. 12, if plotted onto this disgram a~ 
shown, now lies entirely in 8 volume-diffnsion limited 

field. 

now lies entirely in the volume-diffusion limited field 
The reason is contained in Fig. 4. Because of the 
geometry of a compact, the driving force for surface 
diffusion (K in Fig. 4a ; K, in Fig. 4b) goes to zero 
at a smaller value of x/a in the compact. This does 
not mean that sint,ering stops-merely that another 
mechanism (in this case, volume diffusion from the 
grain boundary) takes over. 

(e) T&e me~urements of Seidel ati Jo~~~o~ on 
silver. As an example of the sintering of a compact, 
Fig. 14 shows the data of Seidel and Johnson’“) for 
silver (a = 38 ,u). Data for T and x/a (but not t) are 
given in their paper and were used to construct the 
shaded box. In agreement with these authors’ own 
conclusions, the diagram suggests that volume 

TEMPERATURE ‘C 
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FIG. 14. The sintering of an aggregate of spheres of radius 
38 p. The initial relative density is 0.7. The box shows 
the area investigated by Seidel and Johnson.C13’ It lies in 

the volume diffusion controlled field. 

diffusion is dominant, and that boundary diffusion is 
the next impo~ant contributor. Surface diffusion 
cont~butes relatively little in t.his case. But no 
gene~lizations can be made: under other conditions 
(smaller a; shorter times; lower temperatures) other 
mechanisms would dominat,e. 

4.2 Sintering schedules 

The diagrams allow sintering schedules to be 
visualized and compared. Figure 8 shorted a simple 
example. Another is shown in Fig. 15, which describes 
the sintering of UO, with a particle size of 2 p (a = 1 p). 

The short holds at 800 and 1500°C are designed to 
give strength to the compact to minimize fracture 
during subsequent heating. Even at these low 
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FIG. 15. The sintering of a compact of UO, (a = 1 ,u). 
The initial relative density is 0..7 (The vapor transport 
field of Fig. 7 does not appear here because of the different 
particle 3ize.) A hypothetical sintering schedule to 
produce porous UO, is shown. Other schedules are 

readily visualized with the help of the diagram. 

temperatures (0.34 T, and 0.47 T_,l) some neck 

growt-th occurs-in this case by surface diffusion. This 

is followed by 20 min at 1800°C and 20 min at 2200°C. 

During these two steps, boundary diffusion from the 

grain boundary is dominant. (Here we have assumed 
that erery neck contained a boundary; if grain 
growth occurred during this treaement, the diagram 

n-ould be altered in the way shown by Fig. 8. For 

a dense product, grain growth must be suppressed.) 
The schedule ends on the line which separates st.age 

1 from stage 2: at this point all pores are cylindrical 

or spherical. 
Alternative schedules leading to the same final neck 

size are readily visualized. Paths that allow a large 

contribution from surface diffusion tend to lead to a 
Ion- density. Those t,hat avoid shaded fields tend to 

gire a higher density (at t.he same neck size). 
For practical reasons, product,ion schedules seldom 

inrolve times of more than a few hours. But sintering 

may continue in serrice. Figure 15 shows that 
sintering and densification will continue in this UO, 

compact, at 1000% when times of 10” hr or more 
are arailable-even in the absence of an external 

pressure. 

5. SUMMARY 
APPENDIX 1: DISLOCATION 

INDUCED SINTERISG 

(1) The paper presents an attempt to synthesize Consider a Frank net of dislocations of densit- 
the result of sintering models into useful diagrams. N/cm* in the neck region. The arerage segment 
The diagrams can be used to display the sintering length, 1 pi _LV-~/~. These segments act. as sources for 
behavior of a specific material; as an aid to the mat,ter, climbing between nodes of the net which act 
design and interpretat,ion of experiment; and as a as pinning points, until their currature prerents 

nay of visualizing commercial sintering schedules 

and the effects of changes in schedule. 

Six or more disbinguishable mechanisms contribute 

to sint,ering (in the absence of applied stress). The 

diagrams identify, at a given temperature, particle 
size and neck size, the dominant mechanism, and show 

the rate of sintering that all the mechanisms, acting 

together, produce. 
(3) Their use is illustrated by applying them to the 

experiment,al measurements of Kuczynski,c5) Kingery 
and Berg,(lO) Wilson and Shewmon’2’ and Seidel and 

Johnson,(13) and to the display of sintering schedules. 

(A) The computational scheme used to construct 
such diagrams is a flexible one which allows t,he 

inclusion of grain growth: pore dragging, and ex- 
ternally applied pressure or stress-provided their 

effect on the rate of neck growth is known. 
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further climb. The climb force per unit lengt’h on a 

segment at any instant is 

t 1 

T&J _ Pb’ 

P R 

where p is its current radius of cnrvatnre of the neck, 
and R that of the dislocation. The first term is the 

chemical force due to the increased chemical potential 
of atoms caused by the neck curvature; the second is 
the restoring force due to dislocation curvature. 

Using a standard expression (Hirth and Lothe, 
equation 15-91) we obtain the dislocation climb 

velocity 

As a segment climbs it releases matter at a rate 

~~3lb~~i~. If 1~ segments contribute, matter flows 

into t,he neck region at a rate 

‘Using the standard reIation, p = %rxpi, we obtain 

the neck gron-t h rate : 

The segments which contribute to neck growth are 

those cont,ained in the neck region. Approximating 
its volume by $r&, we obtain 

Finally, xve note that, if the neck grows by this 

mechanism alone, the current neck radius, z, is 
related to the radius of curvat~e, R, of the dis- 
location segments. In climbing to a radius, R, each 
segment releases a volume, ~Zsb/8R}, of matter. The 
total volume which has entered the neclr is 

If the resulting equation, R = (~u~~3~), is sub- 

stituted into equation (A3), lve obtain 

I have investigated the circumstances under 

whicht,hiscontribut,ion tosintering becomes dominant. 
If the dislocation densit.y, .Y, and the particle radius, 
a, are sufficiently large (S 2 10”” cm/cm3 ; a 2 1 
mm), this mechanism appears as a narrow field on 
the diagrams, meaning that it dominates over a 
narrow range of temperature and neck size; such 
high dislocation densities are uncommon, though 

conceivable. The range of dominance appears in the 
early stages of aintering, and does nut contribute in an 

3 

important way 00 densification. It would appear that 

dislocations do not contribute in any important way 

to sintering in the ab.sence of an applied strep or 

pressure--though their effects will obvious&- be 

important when stress or pressure is applied. 

APPENDIX 2: THE SINTERXNG OF SPHERICAL 
AND CYLINDRICAL PORES BY 

BOUNDARY DIFFUSION 

In this Appendix we derive, by standard methods, 

and in a form appropriate to the scheme of this 
paper, rate-equations for the shrinkage of spherical 

pores and of cylindrical pores with the cylinder axis 

lying in the boundary plane. 
Consider a periodic array of spherical pores on a 

grain boundary. The nearest, neighbor pore separa- 

tion is Zz, = %X/X.$ (Fig. 5b). We attribute a circle 

of influence of radius X, to each pore, and assume it 

contains no internal gas pressure. If a quasi steady. 
state is established, the divergence of the boundary 

flux, Jn, is constant,, that is 

G-J,= - 2 V’L~ = constant. {Bl) 

giving the field equation 

V/J =; c (B2) 

where p is the chemical potential of the diffusing 

species. The solution is : 

Cr” 
p=.41nr-/-B-!-T (33) 

where t is a radial distance from the pore center in t.he 
boundary plane, The boundary conditions are 

(1) JB = 0 at r = x, by s~rnetr~ 

(2) p = y at r = pt (W 

(3) “‘3 
s 

_“‘fx dr = 2?rp2yJ2 
Ps 

the fast, condition being a st.atement of equilibrium. 

Applying the boundary conditions and neglecting 

terms of order p.& and (p&f2 compared with unity, 
we obtain 

for spherical pore*, where Ka = 2/p,. If? instead, a 
periodic array of parallel cylindrical pores is assumed 
(the cylinder axis lying in the grain-boundary plane), 
the result is 

3 L)B&&X:\ 
gz- 

I?T ( x f 

where, for cyfindn’cal pores, Ka = I/p,. 
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