A FIRST REPORT ON SINTERING DIAGRAMS*
M. F. ASHBY?

Six or more distinguishable mechanisms contribute to the sintering of an aggregate of particles—even
in the absence of applied stresses. Diagrams can be constructed which identify, at a given temperature,
particle size and neck size, the dominant mechanism, and show the rate of sintering that all the mechanisms,
acting together, produce.

This paper describes the construction of two forms of these diagrams, and illustrates their use in
interpreting sintering experiments and in solving practical sintering problems for metals and ceramics.

DIAGRAMMES DE FRITTAGE (PREMIER ARTICLE)

Six mécanismes distincts, ou plus, contribuent au frittage d'un aggrégat de particules—méme en
I’absence de constraintes appliquées. On peut construire des diagrammes qui donnent, & une température
donnée, la taille des particules, la taille des cols, le mécanisme dominant, et mettent en évidence la
vitesse de frittage produite par tous les mécanismes agissant ensemble. Cet article décrit la construction
de ces diagrammes (sous deux présentations) et illustre leur utilisation pour interpréter les expériences
de frittage et pour résoudre les problémes pratiques de frittage des métaux et des céramiques.

EIN ERSTER BERICHT UBER SINTERDIAGRAMME

Sechs oder mehr unterscheidbare Mechanismen tragen zum Sintern von Teilchen bei—auch in Abwesen-
heit einer aduBeren Belastung. Es kénnen Diagramme konstruiert werden, mit deren Hilfe man bei
vorgegebener Temperatur, TeilchengroBe und Sinterhalsgrofe den dominierenden Mechanismus identi-
fizieren kann und die die Sintergeschwindigkeit zeigen, die sich aufgrund aller wirkenden Mechanismen
ergibt.

In der vorliegenden Arbeit wird die Konstruktion von zwei Diagrammformen beschrieben und deren
Verwendung zur Interpretation von Sinterexperimenten und zur Lésung praktischer Probleme beim

Sintern von Metallen und Keramik erldutert.

1. INTRODUCTION

When a powder aggregate is sintered, necks form
between the powder particles, and the aggregate may
increase in density. Even in a pure, one-component
system (pure silver, for instance) at least sir dis-
tinguishable mechanisms contribute to neck growth
and to densification. Most of these involve the
diffusive transport of matter to the growing neck;
Fig. 1 shows some of the possible diffusion paths.

Certain two-component systems (alloys, for
example) are made more complicated by having two
diffusing species which move at unequal rates;
others (ceramics, for instance) have diffusion coeffi-
cients which may vary strongly with deviations from
stoichiometry and with trace levels of impurity. The
application of a stress or pressure further complicates
sintering by introducing new mechanisms, and by
accelerating certain of the old ones.

This report considers a relatively simple class of
problems: the sintering, in the absence of applied
stress, of pure one-component systems, and pure
stoichiometric compounds. Even then, the process is
a complicated one. The six mechanisms? illustrated
in Fig. 1 have a common driving force: it is the
reduction in the surface area, and thus surface free-
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energy of the system. They are distinguished by the
diffusive path involved, and by the source from which
matter is drawn, and the sink to which it flows. The
table lists these in order.

TasrE 1

Mechanism Source of Sink of
No. Transport path matter** matter**

1 Surface diffusion Surface Neck

2 Lattice diffusion Surface Neck

3 Vapor transport Surface Neck

4 Boundary diffusion Grain boundary Neck

5 Lattice diffusion  Grain boundary Neck

6 Lattice diffusion Dislocations Neck

** Sintering problems can be formulated in terms either of
the flow of matter, or of the counterflow of vacancies. It is
more convenient to focus on the flow of matter.

All of these—and others discussed below—con-
tribute simultaneously to neck growth: the neck
growth-rate or sintering rate, (dz/dt), is the sum of
the six {or more) contributions. Only certain of
them lead to densification: the rate at which the
particle centers approach each other, (dy/df), is
non-zero only when matter is removed from the grain
boundary which separates two particles (mechanism
4 and 5) or from dislocations within the neck region
(mechanism 6). If this boundary and these dis-
locations were removed, or prevented from acting
as sinks for point defects, densification would cease,
although neck growth might continue.
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Fic. 1. Six alternative paths which permit diffusion-

controlled sintering. All lead to neck growth. Only

paths 4—6 cause the particle centers to translate together,
and so permit densification.

If a powder aggregate is heated at a given tem-
perature, will it densify? What is the neck growth-
rate? What is the neck size after a given time?
Which of the six or more mechanisms is the dominant
one? How can one devise a time-temperature
schedule which will lead to maximum density or
maximum porosity? These questions have often
caused difficulty, because the sintering rate is the
sum of several components, not all of which contribute
to densification.

One way to answer them is presented in this report.
It involves the construction of sintering diagrams:
diagrams which show for a given temperature and
neck size, the dominant mechanism of sintering, and
the net rate of neck-growth or densification.

Two forms such diagrams can take are shown in
Fig. 2. They describe the sintering of an aggregate
of tungsten particles with a radius of 2 um. The axes
are homologous temperature, T[Ty, (where T, is
the melting point) and normalized neck radius, zfa,
(where z is the radius of the disc of contact of two
particles, and @ is the particle radius). The space
defined by these axes is divided into fields. Within a
field, a single sintering mechanism is dominant: it
contributes most to neck growth. The largest field
in Fig. 2, for example, is that corresponding to
mechanism (1): within this field, surface diffusion of
matter from sources on the pore surface is dominant.
Superimposed on the fields of Fig. 2(a) are confours
of constant sintering rate: they show, for a given
temperature and neck size, how fast the neck is
growing. Figure 2(b) is a more useful version of the
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Fic. 2. (a) A sintering-rate diagram for tungsten. The
fields indicate the dominant mechanism. In an unshaded
field the dominant mechanism causes both neck-growth
and densification; in a shaded field, only neck growth,
The contours are lines of constant normalized sintering
rate, #ja; (b) A sintering-time diagram. It is identical
with Fig. 2(a), but for the contours, which are now lines
of constant time, t. This shows the neck size after a given
time-temperature treatment.
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diagram; here the contours are of constant sintering
time: they show the neck size after a given time.
Diagrams like these are described more fully
below. They give the rate, and identify the mechanism
of sintering at a given temperature. As well as their
use in designing and interpreting experiments, the
diagrams have potential application to practical
sintering problems. The unshaded fields describe
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mechanisms which lead to densification: if a dense
compact is desired, sintering should be performed in
an unshaded field. Conversely the maximum porosity
is retained if the aggregate is sintered in a shaded
field, as far as possible from the boundary with the
unshaded ones.

Such diagrams are constructed from rate-equations:
equations which describe the contribution of each
participating mechanism to the neck growth-rate
or the densification rate. The next section describes
the equations used for this report. I have attempted
to select from the literature, or derive where necessary,
equations which best combine simplicity with a
sufficient level of accuracy. Exhaustive reference to
their history and derivation would be out of place;
instead, I simply refer to the appropriate review or
paper, or indicate the method of derivation.

The diagrams shown in this report are based on two
assumptions: that the sintering oceurs in the absence
of an applied stress or pressure, and that the pores
contain no gas other than the vapor of the material
being sintered. Diagrams can be constructed which
show the effect of pore pressure and of external
pressure or stress on sintering, but they will not be
described here.

2. RATE EQUATIONS AND THE
STAGES OF SINTERING

2.1 Stages of sintering

It is conventional‘!! to think of sintering as occurring
in three sequential stages. Stage 1 is the early stage of
neck growth: the individual powder particles are
still distinguishable. Stage 2 is the intermediate
stage: the necks are now quite large, and the pores
are roughly cylindrical. By the time the final stage—
stage 3—is reached, the pores are isolated and
spherical.

The appropriate rate equation for & mechanism
depends on the stage which sintering has reached.
In the treatment described below we include a new
stage—stage O—which describes the instantaneous
neck-formation which interatomic forces cause when
powder particles are placed in contact. The next
stage—stage 1—is treated as distinet, with its own
rate equations. But we link stages 2 and 3 together,
using a single set of rate equations to describe both.
Though an approximation, it is adequate for the level
of precision aimed at here.

This level of precision is low. The equations listed
below are, at best, first approximations. It is true
that many of the features of the diagrams we con-
struct from them depend on the ratio of rates (not
their absolute magnitudes), when many of the
approximations cancel. And the scales of the dia-

237

grams are coarse: an error of a factor or two either
way in one rate does not change them much. But
the reader is cautioned not to regard the equations as
exact, or to attribute too much precision to the dia-
grams based on them.

The symbols used in the remainder of this section
have the following meanings:

a particle radius
z radius of disc of contact of two particles
x, the final value of x when 100 per cent

density has been reached
radius of curvature of the neck
curvature differences which drive diffu-
sive fluxes
D, surface diffusion coefficient

D, lattice diffusion coefficient

Dy grain boundary diffusion coefficient

Dg diffusion coeflicient in the gas phase

d, effective surface thickness

dp effective grain boundary thickness

P, vapor pressure [P, = Pjexp — (Q,p/
kT)]

Ve surface free energy

¥B grain boundary free energy

Q atom or molecular volume

k Boltzmann'’s constant (1.38 < 1016 ergs/
K; 1.38 x 10-2J/K)

T absolute temperature (K)

Ty melting temperature (K)

F yQ[kT (typically of magnitude 10-% cm)

f volume fraction of pores

A, theoretical density

A initial density of powder compact

U shear modulus

b Burgers vector of dislocations, or the
atomic or molecular diameter

N dislocation density

¢ velocity of sound (taken as 10% em/sec;

10% m/sec).

To perform the calculation described below:
numerical values for these quantities must be known.
In addition to the quantities which vary rapidly with
temperature (D, D, Dy Dy P,), an explicit tem-
perature dependence of yx and of ¢ was included.
That of quantities which scale as the lattice parameter
{(a, X, p, 8,, 05, Q, A, b) was considered to be too small
to justify including it.

2.2 The driving force: Surface curvature

In the absence of pressure {or stress), sintering is
driven by surface curvature—or rather, by the
difference in surface curvature between sources and



sinks. This driving force differs for different diffusion
paths: and, for a given diffusion path, it can depend
on the configuration and geometry of the sintering
particles.

The exact calculation of the curvature differences
which drive sintering involves difficult geometry, and
the solution of time-dependent diffusion equations
[see. e.g. Ref. (4)]. Our aim, however, is to display
the broad picture of sintering as a whole; clarity
and adequate rigor are retained by taking simple
expressions for the curvature difference, and adjusting
them (when necessary) to give physically obvious
asvmptotic limits.

Sintering of a row of spheres. Consider first a
geometry commonly used in laboratory studies of
sintering: a row of spheres in contactt. Figure 3
shows two of them. The broken lines indicate suc-
cessive position of the growing neck; its radius of
curvature is p. For simplicity, assume that the driving
force goes to zero when the last broken line is reached,
that is, when the row of spheres has become a cylinder.
(This is not strictly true, but is adequate for all
practical purposes.) During the early stages of
sintering, the curvature difference for diffusion from
a surface source {mechanisms 1-3) is obviously

1 1 2
Bk
p =z a

where, by simple geometry, p = [2%/2(a — )] (see,
e.g. Kuczynski®). But this does not go to zero at
r = a. To make it do so, we multiply the expression
by (1 — (z/a)], giving}

K= (1)

Diffusion from a boundary source (mechanisms
4, 53) or from dislocations (mechanism 6) is driven by
a curvature difference

1 1
p oz

As x approaches a, K, starts to differ slightly from K.
But experiments in which rows of spheres are sintered
are rarely carried this far. For simplicity, we adopt

K, =

+ The sintering of a sphere to a plate involves almost the
same geometry. In this report we treat the two problems as
identical.

+ This choice is a compromise. If an equilibrium dihedral
angle forms where the grain boundary between two spheres
intersects the free surface, then sintering may stop before x
grows to equal a. But in sintering & sphere to a plate, x may
grow until it is larger than a. These extreme cases are seldom
of interest because such model experiments are used to study
the early stages of sintering only.
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F1c. 3. The sintering of a row of spheres (a); or of a

sphere to a plate (b). In both cases the curvature

differences driving the various mechanisms decrease
continuously.

a single curvature difference, K. as the driving force
for all mechanisms during the sintering of a row of
spheres, or of a sphere to a plate. The way in which
K, varies with z/a is shown in Fig. 4(a).

Sintering of an aggregate of spheres. Of more
practical interest—and complexity—is the driving
force for the sintering of packed spheres. Figure 35
defines the problem. The upper part of the diagram
shows the pore shape during stage 1; its smallest
radius of curvature is p;. Mechanisms which trans-
port matter from one part of the pore to another
(mechanisms 1-3 of Fig. 1) are driven by the differences

A. SINTERING OF TWO SPHERES, OR A SPHMERE

20/
TO A PLATE
$
Ka Ky =K, =K
101
K GOES TO ZERO
AT Xa=g
11 ) \\
¢ t T —
0 0.25 0.5 0.75 1
X/ -
a
B. SINTERING OF PACKED SPHERES
207 A; INITIAL DENSITY .08 i
A .0
8o THEORETICAL DENSITY {
{
Ko !
I
|
I
10 |
|
I
| X*Xp=0740
g
I
| Xza
14 L _ N\
LR
o 1

Fic. 4. (a) The curvature difference, K, driving the

sintering of two spheres, or of a sphere to a plate; (b) the

curvature differences driving sintering in a compact or
aggregate of spheres.
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STAGE I

STAGEL & I
4

Fic. 5. The upper figure shows the geometry during

stage 1 of sintering; the smallest radius of curvature is

p1- The lower one shows the assumed geometry during

stages 2 and 3; the pores have become cylindrical or
spherical with a radius of p,.

in curvature around the pore itself: between points

A and B in Fig. 5. When the neck size, x, is small,
this curvature difference is

1 1 2

Ke=—o_-+=

P a

(3)

(a curvature is negative when its center of curvature
lies within the material; positive when it lies in the
pore).

But the curvature difference must go to zero when
the pore becomes cylindrical or spherical. If the
initial density of the compact of particles is A;, and
the theoretical density of the material of which they
are composed is A, then the volume fraction of space
in the compact is

If each pore sinters until it becomes spherical, and
(on average) there are 3 pores per particle, then each
spherical pore has a radius of (f/3)3a. We therefore
require that K, go to zero when (referring to Fig. 5):

Ty~ = ({3-)1/3&
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where z, is the final value of z when 100 per cent
density is reached.

This is achieved by modifying equation (3) as
follows

K, = (_1__.1.+:) 1 —
ppr G x, — (J:)l/sa )
3
(K, =20)
and, as before
—_ z”
L= 2(a — z)

Mechanisms which transport matter from the grain
boundary to the neck (mechanisms 4 and 5) are
driven by the difference in curvature between points
A and C (Fig. 5). This curvature difference does not
go to zero when the pore becomes cylindrical or
spherical. During stage 1, it is equal to (+(1/p,) —
(1/z)]. But when the pore becomes cylindrical or
spherical (Fig. 5, stages 2 and 3) it becomes 1/p, or
2/py, respectively. We therefore adopt two expres-
sions for the curvature driving mechanisms (4 and 5):

K, = (l - -1-) (stage 1) (5)
ST
2
K, ==~ (stage 2 and 3) (6)
P2
(K, >0; K3 >0);
where p, =z, — 1z and p; = [2?2(a — z)]. (The

justification for choosing the spherical pore-shape
follows in Section 2.5).

The precise form of these curvatures is important,.
To give a clearer picture of how K, K, and K, (and
thus the relative rates of the mechanisms) vary with
neck size, they are illustrated schematically in Fig.
4(b) for a compact containing an initial volume
fraction, f, or pores equal to 0.2. The reader may
disagree with my choices, or feel (correctly) that they
could be improved. They are compromises which
emphasize simplicity and physical clarity rather
than rigor, and they leave considerable scope for
refinement. Such refinements can readily be in-
corporated into the computational scheme used to
construct the diagrams.

For later reference we note that, for a two-dimen-
sional compact of straight wires, packed as shown in
Fig. 5,

x, = 0.35a.
For a compact of spheres,

z, = 0.74a
has been used.
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2.3 Stage 0: Adhesion

When two particles are placed in contact, inter-
atomic forces act between them, drawing them
together. They deform elastically, forming a neck.!®
If they are absolutely clean (they rarely are, of course)
an upper limit for the radius of this neck is

13
N A
x e (Zett)
au

where 7., an effective surface energy, is given by the
clean surface approximation:

()

94,
Vett = Vs — VB

It is the change in free energy when two free surfaces
are brought together to form a single grain boundary.
(These forces contribute to the green strength of a
compact. The neck thus formed is relatively large
when the particle size is small: adhesion may play
an important role in the behavior of sub-micron
sized particles.)

Most particles are coated with an oxide, have an
organic surface film, or are, in some other sense,
dirty. Adhesion still occurs, but the forces involved
are weaker. A lower limit is obtained by assuming
them to be Van der Waals forces. The cohesive energy
of a Van der Waals bonded solid is typically one
twentieth as great as that of a metallic, ionic or co-
valent solid (0.1 eV per atom instead of about 2 eV
per atom). The lower limiting neck size is then given
by equation (7), with y.p set equal to y,/10 (the
dirty surface approximation).

It is at this stage that dislocation glide may con-
tribute to sintering. The local stresses,'® set up by
the adhesion process, can be large—as large as the
ideal shear strength. Experiments with bubble
rafts’¥—which obey the clean surface approxima-
tion—show that dislocations are nucleated in the
neck region, permitting some neck growth. With real
materials this contribution to neck growth is com-
parable to that due to adhesion alone (equation 7),
which we shall take as an adequate description of both.

To obtain a rate-equation, we assume that, when
particles are placed in contact, interatomic forces
draw them together at roughly the sound velocity
(¢ = 10% cm/sec) until equilibrium is established at

the neck size given by equation (7). This leads
immediately to
2 213
(£)e = 2 for = < (ysa )
x 10
(8)

(-i')o =0
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The diagrams of Sections 3 and 4 use the dirty surface
approximation.

2.4 Stage 1: Diffusion controlled neck growth

At temperature above about 0.25 T',,, adhesion is
followed by diffusion-controlled neck-growth. The
diffusion quickly removes the contact-stresses gener-
ated during stage 0; from then on the diffusive fluxes
are driven by difference in surface curvature (Fig. 1).
The chemical potential of atoms at the neck where two
particles meet is determined by the principal cur-
vatures there. Matter flows into this region from all
other parts of the system where the chemical potential
is higher. The neck growth-rate is determined by the
total flux of matter arriving at the neck; and this is
simply the sum of the contributions from the several
independent paths shown in Fig. 1. We now con-
sider these in order. As before, we seek an equation
for the instantaneous growth-rate in terms of the
current geometry of the sample. All equations are
derived by assuming a quasi steady state (concentra-
tion graclients reach steady values in a time which is
short compared to that required for changes of
geometry of the particles and neck); equilibrium
concentrations at all sinks and sources; and all involve
simplifying assumptions about the diffusion geometry
and the magnitudes of chemical potential gradients.t
All use the expression

V= 2rxp, (9)
to relate the volume flowing per unit time into the
neck region (V) to the neck growth-rate, (%), during
stage 1 of sintering.

Surface diffusion from a surface source (mechanism
1) leads to an approximate rate of neck growth
given by (Kuczynski,™® Wilson and Shewmon®):

# = 2D/ FK,* (10)
where
F=28
T

This equation is easily modified to include the
contribution of lattice diffusion from a surface
source (mechanism (2): Kuezynski,®™ Wilson and
Shewmon®), The contribution is

%, = 2D FK? (11)

Vapor transport from a surface source (mechanism
3: Kingery and Berg'?) leads to a neck growth-rate

/2
8 )1 K,. (12)

Z3 = P F|—r
27AkT

+ Some consequences of an interfacial barrier at sinks and
sources has been discussed elsewhere.!”? Refinements of
diffusion geometry are treated by Nichols!!.#! and Rockland.t®
These refinements are not included in the equations used here.



ASHBY:

(This equation is appropriate for sintering in a
vacuum—the case considered in this report. In an
inert gas atmosphere vapor transport may be
diffusion limited.)

Grain boundary transport from sources on the grain
boundary (mechanism 4) is geometrically simpler
than the others. Allowing the standard assumptions
of a quasi steady-state, and equilibrium at sources
and sinks, the diffusion problem can be solved
exactly [see, e.g. Johnson™V]. The result is:

i, = 4Dg 6pFK, (13)
x
a result which is misprinted in Ref. (2).

The problem of lattice diffusion from sources on
the grain boundary (mechanism 5) has not been solved
with similar rigor. An adequate result can be obtained
by generalizing equation (13) to include the contri-
bution from lattice diffusion, but there is disagreement
about the appropriate way of doing this. I agree
with, and have adopted, the approach of Wilson and
Shewmon!® which amounts to replacing the area
across which the boundary flux flows, roughly =zdg,
by that across which the lattice diffusion flux passes,
roughly 72?; and replacing Dy by Dj. The contri-
bution from lattice diffusion then becomes?

& = 4D, FK,% (14)

These last two mechanisms translate particle centers
together, causing densification.

Lattice diffusion from dislocation sources (mechanism
6) is a potential neck-growth mechanism. It has been
argued that the surface stress induces a stress field
within the neck region of order ¢ = 2y/z, and that
this drives dislocation creep. But steady creep is
only possible if dislocations can be generated at
sources—a process which requires that ¢ > (ub/x),
and hence (in the absence of applied stress) that 2y >
ub. Since this inequality is never satisfied, steady-
state creep by dislocation motion must be ruled out
as a sintering mechanism—a conclusion reached by
Wilson and Shewmon.(®

Other possibilities remain. An attractive one is that
all dislocation segments in the neck region climb,
becoming curved, until they reach a configuration
such that they are in static equilibrium. In climbing,
the dislocations release matter which joins the neck.
This transient creep contribution is discussed further
in Appendix 1, where a rate equation is derived for it.

T Note added in proof. Recent unpublished caleulations by
G. Weatherly and D. Wilkinson indicate that this equation
overestimates the contribution of lattice diffusion.
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The result is

iy = $K,No*D,FlE, — 3421,
| vl
Of the various ways in which dislocations might
contribute to sintering of an unstressed powder
aggregate, this one appears to be the most important.
But for reasonable values of the dislocation density,
N, (<10 cm/cm?) even this contribution is negligible.
Though included in the calculations described below,
dislocation-dominated sintering rarely appears as a
field on any of the diagrams simply because some
other mechanism always goes faster. If external
stresses are applied to the powder aggregate, of course,
the situation changes: dislocations then may con-
tribute in an important way to sintering.
Since they are all independent, the net sinfering
rate during stage 1 sintering is simply the sum of the
six contributions listed in this section:

(i)l = Z -'i"i
i=1

(13)

[

(16)

2.5 Stages 2 and 3

As the neck grows, the curvature difference, which
drives most of these mechanisms, slowly dwindles.
For the calculations of this report, I have drawn a
distinction between stage 1, when a driving force
exists for redistribution of matter within a pore (from
Bto Ain Fig. 5), and stages 2 and 3, when this driving
force has largely disappeared. There remains a
driving force for diffusive flow of matter from points
on the grain boundary separating two particles
(assuming that it is still there) and the pore: from C
to A in Fig. 5. The subtler distinctions between
stages 2 and 3 are ignored; instead they are treated
as obeying the same set of rate equations.

Only two mechanisms are important: boundary
diffusion from sources on the boundary, and lattice
diffusion from the same sources. The first of these
diffusion problems can be solved exactly—making
the standard assumptions of a quasi steady-state,
and perfect sinks and sources. The results for spherical
and cylindrical pores are given in Appendix 2. They
differ—though not enough to make important changes
in the diagrams at the present level of approximation.
Accordingly, we use the result for spherical pores,
assumed to contain no internal gas pressure. The
result is (equation B3):

. . 1

% = 1eDp OpF Ky’ ZEN 3} (17
lo o dming: )
ge( . ) :

The problem of generalizing this to include a
contribution from lattice diffusion is essentially the
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same as that discussed in Section 2.4. We adopt the
same solution, giving for the contribution of lattice
diffusion from boundary sources the rate equation

1
-1 - 3
BT DR — e sl )
log (g) _3
oe 2 4

The net sintering rate during stages 2 and 3 is given

(1:')2,3 = 1"7 + x.s-
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3. SINTERING DIAGRAMS

3.1 Construction and properties of the diagrams

Consider a two-dimensional space with neck-size
and temperature as coordinates (Fig. 2). It is con-
venient to use as axes the normalized neck-size zfa
and homologous temperature T[T y;, where T, is the
melting temperature of the material.

The construction of a diagram involves two stages.
We first ask: in what field of neck size/temperature

TaBLE 1
Silver Copper Stoichiometric U0, Tungsten
Atomic volume ) (cm3) 1.71 x 10-% 1.18 x 10-% 4.1 x 1072 (k) 1.539 x 10~
Burgers vector b (cm) 2.98 x 10-8 2,56 x 10-8 3.86 x 10-8 293 x 108
Melting point (°K) Ty 1234 1356 3123 3683
Shear modulus g (dyn/cm?) 2.64 x 101* (a,b) 4.21 x 101 (h,b) 8.3 x 101t (k1) 1.55 x 1012 (s)
Temp coeff of u (/K) 4.36 x 10-* (a,b) 3.97 x 10-% (h,Db) 1 x10-t (k1) 1.04 x 10~¢ (t)
Dislocation density 10t 1010 108 10t
Density (gfem?), A, 10.5 8.96 10.94 19.3
Surface energy v, 1120 (c) 1720 (c) 1000 (m) 2650 (c)
(ergs/em?)
Eff. boundary thickness 5.78 x 10-¢ 5.12 x 10-8 5.5¢ x 10-8 5.48 x 10-®
(cm)dy
Eff. surface thickness 3.0 x 10-8 3.0 x 10-8 5.54 x 10-8 3.0 x 10-8
(em) 4,
D, for lattice diffusion 4.4 x 1071 (d) 6.2 x 10-t (d) 6.8 x 10-% (n) 5.6 (u)
(em?/sec)
Activation energy for 413 (d) 49.6 (d) 98.3 (n) 140.0  (u)
lattice diffusion
Q, keal/mole
D, for boundary diffusion 1.2 x 107t (e) 10-1 + X 1072 (o) 10.0  (v)
(em?/sec)
Activation energy for 21.5 (o) 25.0 (1) 72.0 (o) 90.5 (v)
boundary diffusion, @z
(keal/mole)
D, for surface diffusion 5.0 x 107 (f) 2 x 104 i) 3.4 x 103 (p) 8.5 (w)
(em?/sec)
Activation energy for 63.6 (f) 49.0 (j) 108.0 (p) 78.0 (w)
surface diffuston, @,
Preexponential for vapor 9.53 x 10t (g) 1.23 x 102 (g) 4.11 x 101 (q,r) 3.23 x 102 (g)
pressure, P, dyn/em?
Activation energy for 635.2 (g) 77.5 (g) 143.9 (q,r) 187.1  (g)
evaporation, Qvap
keal/mole

t Inferred by scaling data of materials of the same structure and of comparable melting points. The activation energy is

the same as that observed for Au in Cu grain boundaries.!
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space is a given mechanism dominant—that is, where
does it contribute more to the neck growth-rate than
any other single mechanism? The boundaries of these
fields are obtained by equating pairs of rate equations
and solving for neck-size as a function of temperature.
At field boundaries (shown as heavy lines on Fig. 2)
two mechanisms contribute equally to the sintering
rate. The heavy broken line marks the transition
from stage 1 to stages 2 and 3: the mechanism does
not change here, though the equation used to describe
it does (Section 2). Above this line the rate of sintering
increases with neck size: it might not do so if the
pores contained trapped gas, but we have assumed
they do not. On diagrams such as this one, which
describe the sintering of an aggregate of particles,
the fields in which a non-densifving mechanism is
dominant are shaded.

Superimposed on the fields are contours of constant
neck growth-rate (Fig. 2a), or of constant time (Fig. 2b).
The neck growth-rate is the sum of the contributions
due to each of the mechanisms listed in Section 2—
with one restriction. Two rate-equations are listed
for each of the two mechanisms (4 and 5): one pair is
appropriate in stage 1, the other in stage 2/3. These
pairs are treated as alternative, not additive, pro-
cesses (for obvious reasons): the faster pair is added
into the total rate; the slower pair is omitted from
the sum.

Contours of constant time are computed by the same
method—and with the same restriction—from an
integral of the sum of the rate-equations with respect
to time. No new physics is involved, but the resulting
diagrams are usually more convenient to use; all but
one of the figures in this report are of this second
type. The diagrams are constructed by numerical
computation. The data used to do this is listed in
Table 1.

Figure 6 shows diagrams for aggregates of silver
particles of two sizes: radii of 100 yum and 10 um.
(The temperature scale on this and most subsequent
diagrams is expanded, and starts at 0.57;,.) Sintering
at constant temperature is described by a vertical line
on the diagram; more complicated time-temperature
schedules can be plotted onto the diagram and show
the dominant mechanism and neck-size, at each
point in the schedule. Figure 6 illustrates that the
relative size of a field depends on the particle size, a,
because the rate-equations differ in their dependence
on a. Obviously there is no single ‘mechanism’ of
sintering: the mechanism which appears as dominant
depends on temperature, on particle size, and on
time: that is, on the stage that sintering has reached.
The contours of constant time, too, are shifted if the
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Fi6. 6. (a) The sintering of an aggregate of silver spheres
of radius @ = 100 ym and initial relative density 0.8;
(b) The same, for @ = 10 um spheres. Because the mech-
anisms depend on @ in different ways, the field boundaries
move when the particle size is changed. The time-
contours also move: large particles sinter more slowly.

LOG (NECK RADIUS/PARTICLE RADIUS)
NECK RADIUS (cm)

]
w

STAGE| O

15
100

-0

0.60

o
Prs
a8

particle size changes, and may be moved from one
field into another—as they are in Fig. 6.

Not all the mechanisms which contribute tosintering
appear as fields. Vapor transport, for instance, is
included in all the computations shown here, yet it
does not appear as a field on Fig. 6. On Fig. 7, a
diagram for the sintering of TO,, it does—because the
relative magnitudes of the vapor pressure and diffu-
sion coefficients, etc. are different for TO, than for
silver.

Change of microstructure drastically alters the
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Frc. 7. A sintering diagram for an aggregate of UO,

particles of radius 10 ym. Unlike the diagrams for

tungsten and silver, vapor transport appears here as a
dominant mechanism.

diagrams. Sintering near the melting point, for
example, can cause grain growth or recrystallization.
The neck between two particles then no longer con-
tains & boundary, and mechanisms (4 and 3) (which
use the boundary as a source) are suppressed. The
result, for copper, is shown in Fig. 8: the rates of
sintering are reduced, and neck growth stops com-
pletely when the neck size is about 0.32a; finally, a
new field appears in which volume diffusion from the
surface is dominant.

(The diagrams of Fig. 8 are designed to describe
the experiments of Alexander and Balluffi,""® who
sintered copper wires (@ = 64 um) at 1075°C for
408 hr: their sintering schedule is shown as a vertical
line on Fig. 8. This schedule caused grain growth
and—as shown in their Fig. 7—necks with no bound-
ary in them have grown to roughly the size predicted
by Fig. 8b.)

3.2 Limitations and extensions

The diagrams are only as good as the equations and
the data used to construct them. The equations
listed in Section 2 are far from perfect: all are based
on idealized geometries, and most make approxima-
tions in solving the diffusion equation. But the data
is even less reliable. Grain boundary and surface
diffusion coefficients are notoriously difficult to
measure; where measurements exist, they are rarely
reliable to better than a factor of 2. This is not a
defect of the diagrams themselves—it simply reflects
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F16. 8. The sintering of copper wires with, and without, a

grain boundary in the neck between the wires. Removal

of the boundary suppresses mechanisms which use it as

a source. (The input data matches the experimental

conditions of Alexander and Balluffi;''* the diagrams
should be compared with their Fig. 7.)

the state of our understanding of sintering and of the
parameters which determine its rate.

For certain mechanisms, more precise rate-equa-
tions exist, or could be developed. But until data
improves, it appears more rewarding to extend the
diegrams to include such things as the effect of
internal gas pressure, external pressure or stress,
interface-reaction controlled kinetics, grain growth
during sintering, and activated sintering. The
computational scheme described above is a very
flexible one: all these phenomena can readily be
included in it.
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4. APPLICATIONS

The final section of thisreport illustrates the applica-
tion of the diagrams to the interpretation of experi-
ment, and to the design of sintering schedules.

4.1 The design and analysis of experiment

(a) Kuczynski’s measurements on copper. Kueczyn-
ski,’ in a classic study of sintering, measured the
neck growth.-rate of copper spheres (@ = 40 um) on
a copper plate. The ranges of temperature and time
he used, and the resulting range of neck size, was

T = 700-900°C
t = 0.5-41 hr
L~ 0.1-0.31.
a

Figure 9 shows the appropriate diagram. (It was
computed by using rate equations (8-16) inclusive,
and setting K, and K, both equal to equation (2).)
The box on the diagram is bounded by the ranges of
T and ¢t that Kuczynski used. The neck size is pre-
dicted tolerably well: comparing predictions for a
given T and ¢t with experiment shows a maximum
diserepancy of 20 per cent in z/a. For most data
points, the agreement is much closer: typically 5
per cent error.
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F16. 9. This diagram describes the sintering of a copper
sphere to a plate. With this geometry the driving force
decreases continuously (as explained in Section 2.2) and
the mechanisms corresponding to stages 2 and 3 are
absent. The shaded box shows the range of time and
temperature investigated by Kuczynski.t$
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The data lies entirely in the field for which surface
diffusion from a surface source is dominant, though
the low temperature end is close enough to the
boundary diffusion controlled field so that the con-
tribution from it—and from volume diffusion—will
be appreciable.

Kuczynski interpreted the data asindicating volume
diffusion control. His conclusion was based on the
determination of the exponent,t n, in the equation

™ = At,

and on an experimental activation energy close to
that for lattice self-diffusion.

This apparently attractive method of matching a
mechanism to the exponent, n, is misleading for two
reasons. First, the sintering rate is rarely determined
by & single mechanism: it is usually the sum of
several contributions, with relative magnitudes that
change as sintering proceeds. (At a field boundary,
two mechanisms contribute equally; where three
fields meet, three do.) This alone makes deductions
based on n unsure; they become even less certain
when the detailed geometry of a single mechanism
is considered (Nichols*®). Then it is found that a
mechanism is not characterized by a constant,
integer value of », as the simple equations (10-14)
would predict.

An activation energy does characterize a mechanism,
provided it acts alone. But the reported activation
energies for surface and volume diffusion in copper
are almost identical: 49.0 and 49.6 kcal/mole. Our
conclusion (fully supporting that first reached by
Wilson and Shewmon(®) is that surface diffusion was
dominant in Kuczynski’s experiments on copper. The
exponent, 7, and the activation energy are not usually
sufficient to identify the dominant mechanism of
sintering, though an experiment conducted in the
center of a field, far from all field boundaries, might
give useful data. But although I believe the diagram
method is a better way of interpreting experiments,
its conclusions should be treated cautiously for the
reasons given in Section 3.2; different input data
could lead to different conclusions.

(b) Kuczynski’'s measurements on silver. Similar
experiments!® on silver (¢ = 180 um) are reanalyzed
in Fig. 10. (This diagram was constructed from the
equations, and with the curvature listed under 4.1(a).
Note that a vapor transport field appears.) The

tIf equations (10-14) are integrated with respect to time,
a set of equations of this form is obtained. The exponent, n,
characterizes a mechanism.
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Fra. 10. The sintering of 180 u silver spheres to a plate.

The shaded box indicates the range of time and tem-

perature investigated by Kuczymski.'®' His investiga-
tion overlaps three fields.

data spans the ranges

T = 500-800°C
{ =1-90 hr

= 0.033-0.162.

a
The shaded region is bounded by the ranges of 7' and
¢t that Kuczynski used. The maximum error in
predicting z/a is 12 per cent (and is systematic: it
appears to indicate that the rate of grain-boundary
diffusion is overestimated on the diagram).

The data overlaps three fields: it is an example of
just how complicated the interpretation of sintering
can be, even in model experiments like this one.
More of the data lies in the boundary-diffusion-
controlled field than in any other; but throughout
the range of these experiments, boundary, volume
and surface diffusion contribute significantly to neck
growth. Clearly it is hopeless to rely on the exponent,
7, or an activation energy, to identify ‘themechanism’:
both vary continuously over this range of 7' and ¢.
{With the insight the diagram gives, one looks for a
different trend than did Kuecznyski: a high activation
energy where volume and surface transport dominate,
and a lower one where boundary diffusion takes over.
In fact the data can be re.analyzed in this frame-
work to give an activation energy of 57 keals at the
higher temperatures, and of 28 kecals at the lower
ones.)
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Our conclusion is that the data are consistent with,
and logically explained by, a dominance of grain-
boundary diffusion below 700°C, and a superposition
of volume and surface diffusion above,

(¢) The measurements of Kingery and Berg on
copper. Kingery and Berg!® measured neck growth
between two spheres of copper (¢ = 57um). Their
ranges of T" and ¢ limit the box shown on Fig. 11 (the
diagram was constructed as described in 4.1.a). The
predicted neck sizes are in broad agreement (=20%)
with those observed.

By measuring the exponent, », and the activation
energy, the authors concluded that volume diffusion
was the dominant mechanism. Reasons for mis-
trusting conclusions based on these two measurements
were listed in Section 4.1(a), and seem to apply here:
the diagram indicates surface diffusion.

Our conclusion is that surface diffusion is dominant,
with a significant contribution from volume diffusion.

(d) The measurements of Wilson and Shewmon on
copper. Wilson and Shewmon'® measured neck
growth in a row of copper spheres. Some of their data
(that for a = 88 um)is shown on Fig. 12. The diagram
supports their conclusion that surface diffusion is
generally dominant, though it also indicates a large
contribution from volume diffusion, which may
become the dominant mechanism at the larger neck
sizes. It is obviously not correct to state that surface
diffusion always dominates neck growth: above a
certain neck size (z/a = 0.32 in this case) volume

diffusion takes over, and below a certain temperature
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Fie. 12. The sintering of two copper spheres of radius
38 u. The box shows the area investigated by Wilson
and Shewmon'!® for this particle size.

(0.55 Ty, in this case) grain boundary diffusion
dominates at all neck sizes.

It may not be sufficiently appreciated that the
sintering of a row of spheres and of a compact of
spheres may differ in mechanism. Suppose, for
instance, that a compact of copper spheres of the same
size (88 u) as those used by Wilson and Shewmon, was
sintered for the same times and temperatures. The
appropriate diagram is shown in Fig. 13: the box
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Fic. 13. The sintering diagram for an aggregate of spheres

of the same size as those of Fig. 12. Because the ge-

ometry of the neck between two isolated spheres differs

from that in a compact, the fields differ in size and posi-

tion. The box of Fig. 12, if plotted onto this diagram as

shown, now lies entu‘ely ﬁmld& volume-diffusion hmxted
e
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now lies entirely in the volume-diffusion limited field
The reason is contained in Fig. 4. Because of the
geometry of a compact, the driving force for surface
diffusion (K in Fig. 4a; K, in Fig. 4b) goes to zero
at a smaller value of zfa in the compact. This does
not mean that sintering stops—merely that another
mechanism (in this case, volume diffusion from the
grain boundary) takes over.

(e) The measurements of Seidel and Johnson on
silver. As an example of the sintering of a compact,
Fig. 14 shows the data of Seidel and Johnson¥ for
silver (@ = 38 u). Data for T and z/a (but not {) are
given in their paper and were used to construct the
shaded box. In agreement with these authors’ own

conclusions, the diagram suggests that volume
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F1g. 14. The sintering of an aggregate of spheres of radius

38 u. The initial relative density is 0.7. The box shows

the area investigated by Seidel and Johnson.**' It lies in
the volume diffusion controlled field.

diffusion is dominant, and that boundary diffusion is
the next important contributor. Surface diffusion
contributes relatively little in this case. But no
generalizations can be made: under other conditions
{smaller a; shorter times; lower temperatures) other
mechanisms would dominate.

2 Sintering schedules

The diagrams allow sintering schedules to be
visualized and compared. Y¥igure 8 showed a simple
example. Another is shown in Fig. 15, which describes
the sintering of UO, with a particlesizeof 2 u (@ = 1 u).

The short holds at 800 and 1500°C are designed to
give strength to the compact to minimize fracture
during subsequent heating. Even st these low



ACTA METALLURGICA, VOL. 22, 1974

TEMPERATURE °C

B 500 1000 1500 000 2500 :
! g FULL DENSITY REACHED | i 1
LBO0RY OIFF FROM | —
[PE 4 . d
G = ol e e
g e i - 20 MINS 2200°C
(2]

~20 MINS 1800°C

-3 : ‘ nuc) K3 “,)o’/// . l

BOUNDARY DIFF.L

@
2
3
<
@
ud -
2 , §
= FROM BORY. ! ~S MINS 1200°C -
IND et ]

§ - ‘ SURFACE DIFFUSION | 3
g -y 7 FROM SURFACE -
g s s h
e |2 {1{fhn g
x
] Wi
z SMINS 800°C :
§ LS T I | STOICHIOMETRIC U0z
) (=3 i E i Compact

[ a = lum

g ROHESTON | ' | aivag 07

»o ! ! |5004 EQNs #1

-20 ; sl

[ T 020 030 040 0% 080 010 080 0% 100
HOMOLOGOUS TEMPERATURE T/Ty

Frc. 15. The sintering of a compact of TO, (& =1 u).
The initial relative density is 0..7 (The vapor transport
field of Fig. 7 does not appear here because of the different
particle size.) A hypothetical sintering schedule to
produce porous UQ, is shown. Other schedules are
readily visualized with the help of the diagram.

temperatures (0.34¢ T, and 0.47 T,,) some neck
growth occurs—in this case by surface diffusion. This
is followed by 20 min at 1800°C and 20 min at 2200°C.
During these two steps, boundary diffusion from the
grain boundary is dominant. (Here we have assumed
that every neck contained a boundary; if grain
growth occurred during this treatment, the diagram
would be altered in the way shown by Fig. 8. For
a dense product, grain growth must be suppressed.)
The schedule ends on the line which separates stage
1 from stage 2: at this point all pores are cylindrical
or spherical.

Alternative schedules leading to the same final neck
size are readily visualized. Paths that allow a large
contribution from surface diffusion tend to lead to a
low density. Those that avoid shaded fields tend to
give a higher density (at the same neck size).

For practical reasons, production schedules seldom
involve times of more than a few hours. But sintering
may continue in service. Figure 15 shows that
sintering and densification will continue in this UO,
compact at 1000°C when times of 10*hr or more
are available—even in the absence of an external
pressure.

5. SUMMARY

(1) The paper presents an attempt to synthesize
the result of sintering models into useful diagrams.
The diagrams can be used to display the sintering
behavior of a specific material; as an aid to the
design and interpretation of experiment; and as a

way of visualizing commercial sintering schedules
and the effects of changes in schedule.

Six or more distinguishable mechanisms contribute
to sintering (in the absence of applied stress). The
diagrams identify, at a given temperature, particle
size and neck size, the dominant mechanism, and show
the rate of sintering that all the mechanisms, acting
together, produce.

(3) Their use is illustrated by applving them to the
experimental measurements of Kuczynski,® Kingery
and Berg,19 Wilson and Shewmon‘® and Seidel and
Johnson,!3 and to the display of sintering schedules.

(4) The computational scheme used to construct
such diagrams is a flexible one which allows the
inclusion of grain growth, pore dragging, and ex-
ternally applied pressure or stress—provided their
effect on the rate of neck growth is known.

ACKNOWLEDGEMENTS

This work was made possible by a grant from the
Ford Motor Company, was supported in part by the
Advanced Research Projects Agency under Contract
DAHCI15-67-C-0219, and by the Division of En-
gineering and Applied Physics, Harvard University.

REFERENCES

F. THUMMLER and W. THOMMA, Met. Rer. 115, 69 (1969).

. T. L. Wirsox and P. G. SHEwMOYN, Trans. AIME 236,
48 (1966).

. R. L. CoBLE, J. Am. Ceram. Soc. 41, 35 (1958).

F. A. Nicros, J. appl. Phys. 37, 2805 (1966); Acta Met.

16, 103 (1968).

. G. C. Kuczy~skl, Trans. AIME 185, 169 (1949).

. K. E. EasTerriNG and A, R. THOLEN, Physics of Sintering
(special issue) p. 77 (1971); Met. Sci. J. 4, 130 (1970);
Acta Met. 20, 1001 (1972).

. M. F. AsnBy, Scripta Met. 3, 837 (1969); Surface Sci. 31,
498 (1972).

8. F. A. NicroLs and W. W, Murrixs, Trans. AIME 233,
1840 (1965).

9. J. G. R. Rockraxp, Acta Met. 14, 1273 (1966).

10. W. D. Kixgery and M. BERG, J. appl. Phys. 26, 1205
(1955).

11. D. L. Jouxsox, J. appl. Phys. 40, 192 (1969).

12. B. H. ALEXa¥DER and R. W. BaLLUFFI, dcta Met. 5, 666
1957).

13. B. R. SEmpEL and D. L. Jouxsox, Physics of Sintering 3,
143 (1971).

14. J. P. Hirre and J. LorHE, Theory of Dislocations.
McGraw-Hill (1968).

15. F. V. Le~vEL, G. 8. Axsery and R. C. Morris, Advanced

Experimental Techniques in Powder Metallurgy, p. 61.

Plenum (1970); Modern Developments in Powder Metal-

lurgy, edited by H. HatsNER, Vol. 4, p. 199. Plenum

(1971).

" —

Ha 0

O

-1

—

APPENDIX 1: DISLOCATION
INDUCED SINTERING
Consider a Frank net of dislocations of density
N/em? in the neck region. The average segment
length, I =~ N-1/2, These segments act as sources for
matter, climbing between nodes of the net which act
as pinning points, until their curvature prevents
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further climb. The climb force per unit length on a
segment at any instant is

(-
P R

where p is its current radius of curvature of the neck,
and R that of the dislocation. The first term is the
chemical force due to the increased chemical potential
of atoms caused by the neck curvature; the second is
the restoring force due to dislocation curvature.
Using a standard expression (Hirth and Lothe,1V
equation 15-91) we obtain the dislocation climb
velocity

= (A1)

As a segment climbs it releases matter at a rate
2/3lbvy,. If = segments contribute, matter flows
into the neck region at a rate

V = jnblyy,,. (A2)
Using the standard relation, V = 2mxp#, we obtain
the neck growth rate:

nl 1 ub

prlt_ ._.__.},
3mzp p vR

The segments which contribute to neck growth are
those contained in the neck region. Approximating

its volume by $723, we obtain
in® N
= .

3
Finally, we note that, if the neck grows by this
mechanism alone, the current neck radius, =z, is
related to the radius of curvature, R, of the dis-
location segments. In elimbing to a radius, R, each
segment releases a volume, (I%b/8R), of matter. The
total volume which has entered the neck is

i =

(A3)

If the resulting eguation, R = (2ab/3z), is sub-
stituted into equation {A3), we obtain

b &ﬁ’ngI{E 3 ;ea:}

9 p 2ya B

S »
I have investigated the circumstances under
which this contribution tosintering becomes dominant.
If the dislocation density, .V, and the particle radius,
o, are sufficiently large (N > 102 em/em?; a =1
mm), this mechanism appears as a narrow field on
the diagrams, meaning that it dominates over a
narrow range of temperature and neck size; such
high dislocation densities are uncommeon, though
conceivable. The range of dominance appears in the
early stages of sintering, and does not contribute in an
3
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important way to densification. It would appear that
dislocations do not contribute in any important way
to sintering in the absence of an applied stress or
pressure—though their effects will obviously be
important when stress or pressure is applied.

APPENDIX 2: THE SINTERING OF SPHERICAL
AND CYLINDRICAL PORES BY
BOUNDARY DIFFUSION

In this Appendix we derive, by standard methods,
and in a form appropriate to the scheme of this
paper, rate-equations for the shrinkage of spherical
pores and of cylindrical pores with the eyvlinder axis
lying in the boundary plane.

Consider & periodic array of spherical pores on a
grain boundary. The nearest neighbor pore separa-
tion is 2z, = 2a/V' 3 (Fig. 5b). We attribute a circle
of influence of radius x, to each pore, and assume it
contains no internal gas pressure. If a quasi steady-
state is established, the divergence of the boundary
flux, J, is constant, that is

V.Jp = — —2 V¥ = constant Bl1
B T X (BL)
giving the field equation
Vi =C {(B2)

where p is the chemical potential of the diffusing
species. The solution is:

y::’llnr%-B—!—%:

(B3)
where r is a radial distance from the pore center in the
boundary plane. The boundary conditions are

(1) J5 = 0 at r = x, by symmetry

53
(2);4:"—?-‘9&1:7:;;._,
P2

k4

{3) f f??.'r)u dr = 2mp,y, 0}

P2

the last condition being a statement of equilibrium.
Applying the boundary conditions and neglecting

terms of order py/a and {p,/a)® compared with unity,

we obtain

& = 15 DgdsFES 1

log, [xf—f‘“] M%

for spherical pores, where K; = 2/p,. If, instead, a
periodic array of parallel cylindrical pores is assumed
{the cylinder axis lying in the grain-boundary plane),
the result is

(B3)

_3 {DB 85F K (B5)

z

where, for cylindrical pores, K, = 1/p,.
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